Marking Guidance		Mark	Comments	
Method 1	Method 2			
Mass of H ₂ O = 4.38-2.46 (= 1.92 g)	Percentage of $H_2O = 44\%$	1	If there is an AE in M1 then can score M2 and M3 If $M_{\rm r}$ incorrect can only score M1	
$\begin{array}{ccc} ZnSO_4 & H_2O \\ \underline{2.46} & \underline{1.92} \\ 161.5 & 18 \end{array}$	ZnSO4 H2O <u>56</u> <u>44</u> 161.5 18	1		
(0.0152 0.107) (1 : 7)	(0.347 2.444) (1 : 7)			
x = 7	x = 7	1	If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.	
Moles HCl = $0.12(0)$		1		
mol ZnCl ₂ <u>= 0.06(0)</u> OR <u>0.12 / 2</u>		1	If M2 incorrect then CE and cannot score M2, M3 and M4.	
mass ZnCl₂ = 0.06 × 136.4			Allow 65.4 + (2 × 35.5) for 136.4	

1

Must be to 2 significant figures or more.

Ignore units.

Question

1(a)

1(b)

= <u>8.18(4)</u> (g) **OR** <u>8.2</u> (g)

PMT

1(c)	Moles $ZnCl_2 = \frac{10.7}{136.4}$ (= 0.0784) OR moles $Zn = 0.0784$	1	
	$M_{222} = 0.0704 \times 65.4 = (5.12 \text{ g})$	1	$M2$ is far their $M1 \times 65.4$
	Mass 211 reacting $= 0.0764 \times 05.4 = (5.15 \text{ g})$	1	
	% purity of Zn = <u>5.13</u> × 100 5.68	1	M3 is M2 × 100 / 5.68 provided M2 is < 5.68
	= <u>90.2</u> % OR <u>90.3</u> %	1	Allow alternative methods.
			M1 = Moles $ZnCl_2 = 10.7$ (= 0.0784) 136.4
			M2 = Theoretical moles Zn = $\frac{5.68}{65.4}$ (= 0.0869)
			M3 = M1 × 100 / M2 = (0.0784 × 100 / 0.0869)
			M4 = <u>90.2%</u> OR <u>90.3</u> %
1(d)	Ionic	1	If not ionic CE = 0/3
	Strong (electrostatic) attraction (between ions)	1	
	between oppositely charged ions / + and – ions / F^{-} and $Zn^{2^{+}}$ ions	1	If IMF, molecules, metallic bonding implied CE = $0/3$

Question	Marking Guidelines	Mark	Additional Guidance
2(a)	'Initial mass' must be the <i>y</i> -axis	1	If axis unlabelled, use data to decide that 'Initial mass' is on the <i>y</i> -axis.
	Sensible scale	1	Do not award this mark if plotted points do not cover at least half of the grid. Do not award this mark if any plotted point is outside the grid.
	All points plotted correctly	1	Allow \pm one small square.
	Point at (0,0) is ringed	1	
2(b)	Best-fit straight line that goes through the origin $\pm 1_{\!\!\!/ 2}$ small square	1	Mark consequentially to plotted points but the line must still go through the origin $\pm \frac{1}{2}$ small square.
			Lose this mark if the line is doubled or kinked.
			If the points are plotted correctly, lose this mark if the line deviates towards the anomalies.
2(c)	Students 3 and 5	1	Allow masses of 1.15 and 1.53 or 2.82 and 3.58 Mark consequentially to plot.
2(d)	Samples 3 or 5 have not lost all their water	1	Allow reaction / decomposition incomplete.
	Sample not heated for enough time / larger masses will take a longer time to dehydrate / decompose	1	

Question	Marking Guidelines	Mark	Additional Guidance
3(a)	Percentage of oxygen is 42.5% (M1)	1	Allow if shown clearly in the calculation.
	Co 13.0/58.9 = 0.221, N 18.6/14 = 1.329,	1	Allow alternative method if chemically correct.
	K 25.9/39.1 = 0.662, O 42.5/16 = 2.656 (M2)		If <i>A</i> _r has been divided by the percentage, chemical error, lose M2 and M3 .
	CoN ₆ K ₃ O ₁₂ (M3)	1	Allow in any order. Correct answer without working scores this mark only.
3(b)	Co(NO ₂) ₆ ³⁻	1	Allow a correct diagram bonding through N or O Do not allow $\text{CoN}_6\text{O}_{12}{}^{3-}$ Must have correct overall charge. Allow consequential answer from Q6(a) if the charge on the

4. (a)	(i)	The pow dens	ver of an <u>atom</u> or <u>nucleus</u> to withdraw or attract electrons <i>OR</i> electron ity <i>OR</i> a pair of electrons (towards itself) <i>Ignore retain</i>	1
		In a <u>c</u>	<u>covalent</u> bond	1
		(ii) More	protons / bigger nuclear charge	1
		Sam	e or similar shielding / electrons in the same shell or principal gy level / atoms get smaller Not same sub–shell Ignore more electrons	1
	(b)	lonic	If not ionic then CE = 0 / 3 If blank lose M1 and mark on	1
		Strong or r	nany or lots of (electrostatic) <u>attractions</u> (between ions) If molecules / IMF / metallic / atoms lose M2 + M3, penalise incorrect ions by 1 mark	1
		Between +	and – ions / between Li⁺ and F⁻ ions / oppositely charged ions Allow strong (ionic) bonds for max 1 out of M2 and M3	1
	(c)	Small elec	tronegativity difference / difference = 0.5 <i>Must be comparative</i> <i>Allow 2 non-metals</i>	1

(d) (i) (simple) <u>molecular</u> Ignore simple covalent

> (ii) $OF_2 + H_2O \longrightarrow O_2 + 2HF$ Ignore state symbols Allow multiples Allow OF_2 written as F_2O

(iii) 45.7% O

1

1

1

1

(O F)
(<u>45.7</u> <u>54.3</u>)
(16 19)
If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2

(2.85 2.85) (1 1)

EF = <u>OF or FO</u> Calculation of OF by other correct method = 3 marks Penalise Fl by 1 mark

1

1

MF (= 70.0 / 35) = O_2F_2 or F_2O_2

[14]