

1(c)	Moles $\mathrm{ZnCl}_{2}=\frac{10.7}{136.4}(=0.0784)$ OR moles $\mathrm{Zn}=0.0784$ Mass Zn reacting $=0.0784 \times 65.4=(5.13 \mathrm{~g})$ $\%$ purity of $\mathrm{Zn}=\frac{5.13}{5.68} \times 100$ $=\underline{90.2} \%$ OR $\underline{90.3} \%$	1 1 1 1	M 2 is for their $\mathrm{M} 1 \times 65.4$ M 3 is $\mathrm{M} 2 \times 100 / 5.68$ provided M 2 is <5.68 Allow alternative methods. $\begin{aligned} & \mathrm{M} 1=\text { Moles } \mathrm{ZnCl}_{2}=\frac{10.7}{136.4}(=0.0784) \\ & \mathrm{M} 2=\text { Theoretical moles } \mathrm{Zn}=\frac{5.68}{65.4} \quad(=0.0869) \\ & \mathrm{M} 3=\mathrm{M} 1 \times 100 / \mathrm{M} 2=(0.0784 \times 100 / 0.0869) \\ & \mathrm{M} 4=\underline{90.2 \%} \text { OR } \underline{90.3} \% \end{aligned}$
1(d)	Ionic Strong (electrostatic) attraction (between ions) between oppositely charged ions / + and - ions / F ${ }^{-}$and Zn^{2+} ions	1 1	If not ionic $C E=0 / 3$ If IMF, molecules, metallic bonding implied CE $=0 / 3$

Question	Marking Guidelines	Mark	Additional Guidance
2(a)	'Initial mass' must be the y-axis Sensible scale All points plotted correctly Point at $(0,0)$ is ringed	1 1 1 1	If axis unlabelled, use data to decide that 'Initial mass' is on the y-axis. Do not award this mark if plotted points do not cover at least half of the grid. Do not award this mark if any plotted point is outside the grid. Allow \pm one small square.
2(b)	Best-fit straight line that goes through the origin $\pm 1 / 2$ small square	1	Mark consequentially to plotted points but the line must still go through the origin $\pm 1 / 2$ small square. Lose this mark if the line is doubled or kinked. If the points are plotted correctly, lose this mark if the line deviates towards the anomalies.
2(c)	Students 3 and 5	1	Allow masses of 1.15 and 1.53 or 2.82 and 3.58 Mark consequentially to plot.
2(d)	Samples 3 or 5 have not lost all their water Sample not heated for enough time / larger masses will take a longer time to dehydrate / decompose	1 1	Allow reaction / decomposition incomplete.

Question	Marking Guidelines	Mark	Additional Guidance
3(a)	Percentage of oxygen is 42.5% (M1) $\begin{aligned} & \text { Co } 13.0 / 58.9=0.221, \text { N } 18.6 / 14=1.329, \\ & \text { K } 25.9 / 39.1=0.662, \text { O } 42.5 / 16=2.656 \text { (M2) } \end{aligned}$ $\mathrm{CoN}_{6} \mathrm{~K}_{3} \mathrm{O}_{12}(\mathrm{M} 3)$	1 1 1	Allow if shown clearly in the calculation. Allow alternative method if chemically correct. If A_{r} has been divided by the percentage, chemical error, lose M2 and M3. Allow in any order. Correct answer without working scores this mark only.
3(b)	$\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}$	1	Allow a correct diagram bonding through N or O Do not allow $\mathrm{CoN}_{6} \mathrm{O}_{12}{ }^{3-}$ Must have correct overall charge. Allow consequential answer from Q6(a) if the charge on the anion is correct.

4.(a) (i) The power of an atom or nucleus to withdraw or attract electrons $\boldsymbol{O R}$ electron density OR a pair of electrons (towards itself)
 Ignore retain

In a covalent bond
(ii) More protons / bigger nuclear charge

Same or similar shielding / electrons in the same shell or principal energy level / atoms get smaller
 Not same sub-shell
 Ignore more electrons

(b) Ionic

If not ionic then $C E=0 / 3$
If blank lose M1 and mark on

Between + and - ions / between Li^{+}and F^{-}ions / oppositely charged ions Allow strong (ionic) bonds for max 1 out of M2 and M3
(c) Small electronegativity difference / difference $=0.5$

Must be comparative
Allow 2 non-metals
(d) (i) (simple) molecular Ignore simple covalent
(ii) $\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{HF}$

Ignore state symbols
Allow multiples
Allow OF_{2} written as $\mathrm{F}_{2} \mathrm{O}$
(iii) $45.7 \% \mathrm{O}$
$\left(\begin{array}{ll}0 & F\end{array}\right)$
$\left(\begin{array}{ll}45.7 & \left.\frac{54.3}{19}\right)\end{array}\right.$
($16 \quad 19$)
If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2
(2.85 2.85)
(1 1)

MF (= $70.0 / 35)=\mathrm{O}_{2} \mathrm{~F}_{2}$ or $\mathrm{F}_{2} \mathrm{O}_{2}$
1

